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Abstract
For over half a century, psychologists have been struck by how poor people are at
expressing their internal sensations, impressions, and evaluations via rating scales.
When individuals make judgments, they are incapable of using an absolute rating
scale, and instead rely on reference points from recent experience. This relativity
of judgment limits the usefulness of responses provided by individuals to surveys,
questionnaires, and evaluation forms. Fortunately, the cognitive processes that
transform internal states to responses are not simply noisy, but rather are influ-
enced by recent experience in a lawful manner. We explore techniques to remove
sequential dependencies, and thereby decontaminate a series of ratings to obtain
more meaningful human judgments. In our formulation, decontamination is fun-
damentally a problem of inferring latent states (internal sensations) which, be-
cause of the relativity of judgment, have temporal dependencies. We propose a
decontamination solution using a conditional random field with constraints mo-
tivated by psychological theories of relative judgment. Our exploration of de-
contamination models is supported by two experiments we conducted to obtain
ground-truth rating data on a simple length estimation task. Our decontamination
techniques yield an over 20% reduction in the error of human judgments.

1 Introduction

Suppose you are asked to make a series of moral judgments by rating, on a 1–10 scale, various
actions, with a rating of 1 indicating ’not particularly bad or wrong’ and a rating of 10 indicating
’extremely evil.’ Consider the series of actions on the left.

(1) Stealing a towel from a hotel (1′) Testifying falsely for pay
(2) Keeping a dime you find on the ground (2′) Using guns on striking workers
(3) Poisoning a barking dog (3′) Poisoning a barking dog

Now consider that instead you had been shown the series on the right. Even though individuals are
asked to make absolute judgments, the mean rating of statement (3) in the first context is reliably
higher than the mean rating of the identical statement (3′) in the second context (Parducci, 1968).
The classic explanation of this phenomenon is cast in terms of anchoring or primacy: information
presented early in time serves as a basis for making judgments later in time (Tversky & Kahneman,
1974). In the Netflix contest, significant attention was paid to anchoring effects by considering that
an individual who gives high ratings early in a session is likely to be biased toward higher ratings
later in a session (Koren, August 2009; Ellenberg, March 2008).

The need for anchors comes from the fact that individuals are poor at or incapable of making absolute
judgments and instead must rely on reference points to make relative judgments (e.g., Laming, 1984;
Parducci, 1965, 1968; Stewart, Brown, & Chater, 2005). Where do these reference points come
from? There is a rich literature in experimental and theoretical psychology exploring sequential
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dependencies suggesting that reference points change from one trial to the next in a systematic
manner. (We use the psychological jargon ‘trial’ to refer to a single judgment or rating in a series.)

Sequential dependencies occur in many common tasks in which an individual is asked to make
a series of responses, such as filling out surveys, questionnaires, and evaluations (e.g., usability
ratings, pain assessment inventories). Every faculty member is aware of drift in grading that neces-
sitates comparing papers graded early on a stack with those graded later. Recency effects have been
demonstrated in domains as varied as legal reasoning and jury evidence interpretation (Furnham,
1986; Hogarth & Einhorn, 1992) and clinical assessments (Mumma & Wilson, 2006).

However, the most carefully controlled laboratory studies of sequential dependencies, dating back
to the the 1950’s (discussed by Miller, 1956), involve the rating of unidimensional stimuli, such as
the loudness of a tone or the length of a line. Human performance at rating stimuli is surprisingly
poor compared to an individual’s ability to discriminate the same stimuli. Regardless of the domain,
responses convey not much more than 2 bits of mutual information with the stimulus (Stewart et
al., 2005). Different types of judgment tasks have been studied including absolute identification,
in which the individual’s task is to specify the distinct stimulus level (e.g., 10 levels of loudness),
magnitude estimation, in which the task is to estimate the magnitude of a stimulus which may vary
continuously along a dimension, and categorization which is a hybrid task requiring individuals to
label stimuli by range. Because the number of responses in absolute identification and categorization
tasks is often quite large, and because individuals are often not aware of the discreteness of stimuli in
absolute identification tasks, there isn’t a qualitative difference among tasks. Feedback is typically
provided, especially in absolute identification and categorization tasks. Without feedback, there are
no explicit anchors against which stimuli can be assessed.

The pattern of sequential effects observed is complex. Typically, experimental trial t, trial t−1 has a
large influence on ratings, and trials t− 2, t− 3, etc., have successively diminishing influences. The
influence of recent trials is exerted by both the stimuli and responses, a fact which makes sense in
light of the assumption that individuals form their response on the current trial by analogy to recent
trials (i.e., they determine a response to the current stimulus that has the same relationship as the
previous response had to the previous stimulus). Both assimilation and contrast effects occur: an
assimilative response on trial t occurs when the response moves in the direction of the stimulus or
response on trial t − k; a contrastive response is one that moves away. Interpreting recency effects
in terms of assimilation and contrast is nontrivial and theory dependent (DeCarlo & Cross, 1990).

Many mathematical models have been developed to explain the phenomena of sequential effects in
judgment tasks. All adopt the assumption that the transduction of a stimulus to its internal represen-
tation is veridical. We refer to this internal representation as the sensation, as distinguished from the
external stimulus. (For judgments of nonphysical quantities such as emotional states and affinities,
perhaps the terms impression or evaluation would be more appropriate than sensation.) Sequential
dependencies and other corruptions of the representation occur in the mapping of the sensation to a
response. According to all theories, this mapping requires reference to previous sensation-response
pairings. However, the theories differ with respect to the reference set. At one extreme, the theory of
Stewart et al. (2005) assumes that only the previous sensation-response pair matters. Other theories
assume that multiple sensation-response anchors are required, one fixed and unchanging and another
varying from trial to trial (e.g., DeCarlo & Cross, 1990). And in categorization and absolute identifi-
cation tasks, some theories posit anchors for each distinct response, which are adjusted trial-to-trial
(e.g., Petrov & Anderson, 2005). Range-frequency theory (Parducci, 1965) claims that sequential
effects arise because the sensation-response mapping is adjusted to utilize the full response range,
and to produce roughly an equal number of responses of each type. This effect is the consequence
of many other theories, either explicitly or implicitly.

Because recent history interacts with the current stimulus to determine an individual’s response,
responses have a complex relationship with the underlying sensation, and do not provide as much
information about the internal state of the individual as one would hope. In the applied psychology
literature, awareness of sequential dependencies has led some researchers to explore strategies that
mitigate relativity of judgment, such as increasing the number of response categories and varying
the type and frequency of anchors (Mumma & Wilson, 2006; Wedell, Parducci, & Lane, 1990).

In contrast, our approach to extracting more information from human judgments is to develop auto-
matic techniques that recover the underlying sensation from a response that has been contaminated
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by cognitive processes producing the response. We term this recovery process decontamination. As
we mentioned earlier, there is some precedent in the Netflix competition for developing empirical
approaches to decontamination. However, to the best of our knowledge, the competitors were not
focused on trial-to-trial effects, and their investigation was not systematic. Systematic investigation
requires ground truth knowledge of the individuals’ sensations.

2 Experiments

To collect ground-truth data for use in the design of decontamination techniques, we conducted two
behavioral experiments using stimuli whose magnitudes could be objectively determined. In both
experiments, participants were asked to judge the horizontal gap between two vertically aligned
dots on a computer monitor. The position of the dots on the monitor shifted randomly from trial
to trial. Participants were asked to respond to each dot pair using a 10-point rating scale, with 1
corresponding to the smallest gap they would see, and 10 corresponding to the largest.

The task requires absolute identification of 10 distinct gaps. The participants were only told that
their task was to judge the distance between the dots. They were not told that only 10 unique stimuli
were presented, and were likely unaware of this fact (memory of exact absolute gaps is too poor), and
thus the task is indistinguishable from a magnitude estimation or categorization task in which the gap
varied continuously. The experiment began with a practice block of ten trials. During the practice
block, participants were shown every one of the ten gaps in random order, and simultaneous with the
stimulus they were told—via text on the screen below the dots—the correct classification. After the
practice blocks, no further feedback was provided. Although the psychology literature is replete with
line-length judgment studies (two recent examples: Lacouture, 1997; Petrov & Anderson, 2005), the
vast majority provide feedback to participants on at least some trials beyond the practice block. We
wanted to avoid the anchoring provided by feedback in order that the task is more analogous to
the the type of survey tasks we wish to decontaminate, e.g., the Netflix movie scores. Another
distinction between our experiments and previous experiments is an attempt to carefully control the
sequence structure, as described next.

2.1 Experiment Methodology

In Experiment 1, the practice block was followed by 2 blocks of 90 trials. Within a block, the trial
sequence was arranged such that each gap was preceded exactly once by each other gap, with the
exception that no repetitions occurred. Further, every ten trials in a block consisted of exactly one
presentation of each gap. In Experiment 2, the practice block was followed by 2 blocks of 100 trials.
The constraint on the sequence in Experiment 2 was looser than in Experiment 1: within a block,
each gap occurred exactly once preceded by each other gap. However, repetitions were included, and
there was no constraint on the subblocks of ten trials. The other key difference between experiments
was the gap lengths. In Experiment 1, gap g, with g ∈ {1, 2, ...10} spanned a proportion .08g of the
screen width. In Experiment 2, gap g spanned a proportion .061 + .089g of the screen width. The
main reason for conducting Experiment 2 was that we found the gaps used in Experiment 1 resulted
in low error rates and few sequential effects for the smaller gaps. Other motivations for Experiment
2 will be explained later.

Both experiments were conducted via the web, using a web portal set up for psychology studies.
Participants were prescreened for their ability to understand English instructions, and were paid $4
for the 10–15 minutes required to complete the experiment. Two participants in Experiment 1 and
one participant in Experiment 2 were excluded from data analysis because their accuracy was below
20%. The portal was opened for long enough to obtain good data from 76 participants in each
Experiment. Individuals were allowed to participate in only one of the two experiments.

2.2 Results and Discussion of Human Experiments

Figure 1 summarizes the data from Experiments 1 and 2 (top and bottom rows, respectively). All
graphs depict the error on a trial, defined as the signed difference Rt − St between the current
response, Rt, and the current stimulus level St. The left column plots the error on trial t as a function
of St−1 (along the abscissa) and St (the different colored lines, as specified by the key between the
graphs). Pairs of stimulus gaps (e.g., G1 and G2) have been grouped together to simplify the graph.
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Figure 1: Human data from Experiments 1 (top row) and 2 (bottom row).

The small bars around the point indicate one standard error of the mean. The variation along the
abscissa reflects sequential dependencies: assimilation is indicated by pairs of points with positive
slopes (larger values of St−1 result in larger Rt), and contrast is indicated by negative slopes. The
pattern of results across the two experiments is remarkably consistent.

The middle column shows another depiction of sequential dependencies by characterizing the distri-
bution of errors (Rt−St ∈ {> 1, 1, 0,−1, < −1}) as a function of St−St−1. The predominance of
assimilative responses is reflected in more Rt > St responses when St − St−1 < 0, and vice-versa.
The rightmost column presents the lag profile that characterizes how the stimulus on trial t − k for
k = 1...5 influences the response on trial t. The bars on each point indicate one standard error of
the mean. For the purpose of the current work, most relevant is that sequential dependencies in this
task may stretch back two or three trials.

3 Approaches To Decontamination

From a machine learning perspective, decontamination can be formulated in at least three different
ways. First, it could be considered an unsupervised infomax problem of determining a sensation
associated with each distinct stimulus such that the sensation sequence has high mutual information
with the response sequence. Second, it could be considered a supervised learning problem in which
a specialized model is constructed for each individual, using some minimal amount of ground-truth
data collected from that individual. Here, the ground truth is the stimulus-sensation correspondence,
which can be obtained—in principle, even with unknown stimuli—by laborious data collection tech-
niques, such as asking individuals to provide a full preference ordering or multiple partial orderings
over sets of stimuli, or asking individuals to provide multiple ratings of a stimulus in many different
contexts, so as to average out sequential effects. Third, decontamination models could be built based
on ground-truth data for one group of individuals and then tested on another group. In this paper,
we adopt this third formulation of the problem.

Formally, the decontamination problem involves inferring the sequence of (unobserved) sensations
given the complete response sequence. To introduce some notation, let Rp

t1,t2 denote the sequence
of responses made by participant p on trials t1 through t2 when shown a sequence of stimuli that
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evoke the sensation sequence Sp
t1,t2 .1 Decontamination can be cast as computing the expectation or

probability over Sp
1,T given Rp

1,T , where T is the total number of judgments made by the individual.

Although psychological theories of human judgment address an altogether different problem—that
of predicting Rp

t , the response on trial t, given Sp
1,t and Rp

1,t−1—they can inspire decontamination
techniques. Two classes of psychological theories correspond to two distinct function approximation
techniques. Many early models of sequential dependencies, culminating in the work of DeCarlo and
Cross (1990), are framed in terms of autoregression. In contrast, other models favor highly flexible,
nonlinear approaches that allow for similarity-based assimilation and contrast, and independent rep-
resentations for each response label (e.g., Petrov & Anderson, 2005). Given the discrete stimuli and
responses, a lookup table seems the most general characterization of these models.

We explore a two-dimensional space of decontamination techniques. The first dimension of this
space is the model class: regression, lookup table, or an additive hybrid. We define our regression
model estimating St as:

REGt(m,n) = α + β ·Rt−m+1,t + γ · St−n,t−1, (1)

where the model parameters β and γ are vectors, and α is a scalar. Similarly, we define our lookup
table LUTt(m,n) to produce an estimate of St by indexing over the m responses Rt−m+1,t and the
n sensations St−n,t−1. Finally, we define an additive hybrid, REG⊕LUT(m,n) by first constructing
a regression model, and then building a lookup table on the residual error, St − REGt(m,n). The
motivation for the hybrid is the complementarity of the two models, the regression model capturing
linear regularities and the lookup table representing arbitrary nonlinear relationships.

The second dimension in our space of decontamination techniques specifies how inference is han-
dled. Decontamination is fundamentally a problem of inferring unobserved states. To utilize any
of the models above for n > 0, sensations St−n,t−1 must be estimated. Although time flows in
one direction, inference flows in two: in psychological models, Rt is influenced by both St and
St−1; this translates to a dependence of St on both St−1 and St+1 when conditioned on R1,T . To
handle inference properly, we construct a linear-chain conditional random field (Lafferty, McCal-
lum, & Pereira, 2001; Sutton & McCallum, 2007). As an alternative to the conditional random field
(hereafter, CRF), we also consider a simple approach in which we simply set n = 0 and discard the
sensation terms in our regression and lookup tables. At the other extreme, we can assume an oracle
that provides St−n,t−1; this oracle approach offers an upper bound on achievable performance.

We explore the full Cartesian product of approaches consisting of models chosen from
{REG, LUT, REG⊕LUT} and inference techniques chosen from {SIMPLE, CRF, ORACLE}. The
SIMPLE and ORACLE approaches are straightforward classic statistics, but we need to explain how
the different models are incorporated into a CRF. The linear-chain CRF is a distribution

P (S1,T |R1,T ) =
1

Z(R1,T )
exp

{
T∑

t=1

K∑
k=1

λkfk(t, St−1,t, R1,T )

}
(2)

with a given set of feature functions, {fk}. The linear combination of these functions determines the
potential at some time t, denoted Φt, where a higher potential reflects a more likely configuration
of variables. To implement a CRF-REG model, we would like the potential to be high when the
regression equation is satisfied, e.g., Φt = −(REGt(m,n) − St)2. Simply expanding this error
yields a collection of first and second order terms. Folding the terms not involving the sensations
into the normalization constant, the following terms remain for REG(2, 1): St, RtSt, S2

t , RtSt−1,
Rt−1St, and StSt−1.2 The regression potential function can be obtained by making each of these
terms into a real-valued feature, and determining the λ parameters in Equation 2 to yield the α, β,
and γ parameters in Equation 1.3

The CRF-LUT model could be implemented using indicator features, as is common in CRF models,
but this approach yields an explosion of free parameters: a feature would be required for each cell of

1We are switching terminology: in the discussion of our experiment, S refers to the stimulus. In the dis-
cussion of decontamination, S will refer to the sensation. The difference is minor because the stimulus and
sensation are in one-to-one correspondence.

2The terms Rt−1St−1 and S2
t−1 are omitted because they correspond to RtSt and S2

t , respectively.
3As we explain shortly, the {λk} are determined by CRF training; our point here is that the CRF has the

capacity to represent a least-squares regression solution.
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the table and each value of St, yielding 104 free parameters for a gap detection task with a modest
CRF-LUT(2, 1). Instead, we opted for the direct analog of the CRF-REG: encouraging configurations
in which St is consistent with LUTt(m,n) via potential Φt = −(LUTt(m,n)−St)2. This approach
yields three real-valued features: LUTt(m,n)2, St

2, and LUTt(m,n)St. (Remember that lookup
table values are indexed by St−1, and therefore cannot be folded into the normalization constant.)

Finally, the CRF-REG⊕LUT is a straightforward extension of the models we’ve described, based on
the potential Φt = −(REGt(m,n) + LUTt(m,n) − St)2, which still has only quadratic terms in
Stand St−1. Having now described a 3 × 3 space of decontamination approaches, we turn to the
details of our decontamination experiments.

3.1 Debiasing and Decompressing

Although our focus is on decontaminating sequential dependencies, or desequencing, the quality
of human judgments can be reduced by at least three other factors. First, individuals may have an
overall bias toward smaller or larger ratings. Second, individuals may show compression, possibly
nonlinear, of the response range. Third, there may be slow drift in the center or spread of the
response range, on a relatively long time scale. All of these factors are likely to be caused at least in
part by trial-to-trial sequential effects. For example, compression will be a natural consequence of
assimilation because the endpoints of the response scale will move toward the center. Nonetheless
we find it useful to tease apart the factors that are easy to describe (bias, compression) from those
that are more subtle (assimilation, contrast).

In the data from our two experiments, we found no evidence of drift, as determined by the fact that
regression models with moving averages of the responses did not improve predictions. This finding
is not terribly surprising given that the entire experiment took only 10–15 minutes to complete.
We briefly describe how we remove bias and compression from our data. Decompression can be
achieved with a LUT(1, 0), which maps each response into the expected sensation. For example, in
Experiment 1, the shortest stimuli reported as G1 and G2 with high accuracy, but the longest stimuli
tended to be underestimated by all participants. The LUT(1, 0) compensates for this compression
by associating responses G8 and G9 with higher sensation levels if the table entries are filled based
on the training data according to: LUTt(1, 0) ≡ E[St|Rt]. All of the higher order lookup tables,
LUT(m,n), for m ≥ 1 and n ≥ 0, will also perform nonlinear decompression in the same manner.
The REG models alone will also achieve decompression, though only linear decompression.

We found ample evidence of individual biases in the use of the response scale. To debias the data,
we compute the mean response of a particular participant p, R̄p ≡ 1/T

∑
Rp

t , and ensure the means
are homogeneous via the constraint Rp

t − R̄p = Sp
t − S̄p. Assuming that the mean sensation is

identical for all participants—as it should be in our experiments—debiasing can be incorporated
into the lookup tables by storing not E[St|Rt...], but rather E[Sp

t + R̄p|Rt...], and recovering the
sensation for a particular individual using LUT(m,n) − R̄p. (This trick is necessary to index into
the lookup table with discrete response levels. Simply normalizing individuals’ responses will yield
noninteger responses.) Debiasing of the regression models can be achieved by adding a R̄p term to
the regression. Note that this extra term—whether in the lookup table retrieval or the regression—
results in additional features involving combinations of R̄p and St, St−1, and LUT(m,n) being
added to the three CRF models.

3.2 Modeling Methodology

In all the results we report on, we use a one-back response history, i.e., m = 2. Therefore, the
SIMPLE models are REG(2, 0), LUT(2, 0), and REG⊕LUT(2, 0), the ORACLE and CRF models are
REG(2, 1), LUT(2, 1), and REG⊕LUT(2, 1). In the ORACLE models, St−1 is assumed to be known
when St is estimated; in the CRF models, the sensations are all inferred. The models are trained
via multiple splits of the available data into equal-sized training and test sets (38 participants per
set). Parameters of the SIMPLE-REG and ORACLE-REG models are determined by least-squares
regression on the training set. Entries in the SIMPLE-LUT and ORACLE-LUT are the expectation over
trials and participants: E[Sp

t + R̄p|Rt, Rt−1, ...]. The SIMPLE-REG⊕LUT and ORACLE-REG⊕LUT
models are trained first by obtaining the regression coefficients, and then filling lookup table entries
with the expected residual, E[Sp

t −REGp
t |Rt, Rt−1, ...]. For the CRF models, the feature coefficients

{λk} are obtained via gradient descent and the forward-backward algorithm, as detailed in Sutton
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Figure 2: Results from Experiment 1 (left column) and Experiment 2 (right column). The top row
compares the reduction in prediction error for different types of decontamination. The bottom row
compares reduction in prediction error for different desequencer algorithms.

and McCallum (2007). The lookup tables used in the CRF-LUT and CRF-REG⊕LUT are the same
as those in the ORACLE-LUT and ORACLE-REG⊕LUT models. The CRF λ parameters are initialized
to be consistent with our notion of the potential as the negative squared error, using initialization
values obtained from the regression coefficients of the ORACLE-REG model. This initialization is
extremely useful because it places the parameters in easy reach of an effective local minimum. No
regularization is used on the CRF because of the small number of free parameters (7 for CRF-REG,
5 for CRF-LUT, and 14 for CRF-REG⊕LUT). Each model is used to determine the expected value of
St. We had initially hoped that a Viterbi decoding of the CRF might yield useful predictions, but the
expectation proved far superior, most likely because there is not a single path through the CRF that
is significantly better than others due to high level of noise in the data.

Beyond the primary set of models described above, we explored several other models. We tested
models in which the sensation and/or response values are log transformed, because sensory trans-
duction introduces logarithmic compression. However, these models do not reliably improve decon-
tamination. We examined higher-order regression models, i.e., m > 2. These models are helpful
for Experiment 1, but only because we inadvertently introduced structure into the sequences via the
constraint that each stimulus had to be presented once before it could be repeated. The consequence
of this constraint is that a series of small gaps predicted a larger gap on the next trial, and vice-
versa. One reason for conducting Experiment 2 was to eliminate this constraint. It also eliminated
the benefit of higher-order regression models. We also examined switched regression models whose
parameters were contingent on the current response. These models do not significantly outperform
the REG⊕LUT models.

4 Results

Figure 2 shows the root mean squared error (RMSE) between the ground-truth sensation and the
model-estimated sensation over the set of validation subjects for 100 different splits of the data. The
left and right columns present results for Experiments 1 and 2, respectively. In the top row of the
figure, we compare baseline performance with no decontamination—where the sensation prediction
is simply the participant’s actual response (pink bar)—against decompression alone (magenta bar),
debiasing alone (red bar), debiasing and decompression (purple bar), and the best full decontamina-
tion model, which includes debiasing, decompression, and desequencing (blue bar). The difference
between each pair of these results is highly reliable, indicating that bias, compression, and recency
effects all contribute to the contamination of human judgments.
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The reduction of error due to debiasing is 14.8% and 11.1% in Experiments 1 and 2, respectively.
The further reduction in error when decompressing is incorporated is 4.8% and 3.4% in Experiments
1 and 2. Finally, the further reduction in error when desequencing is incorporated is 5.0% and 4.1%
in Experiments 1 and 2. We reiterate that bias and compression likely have at least part of their basis
in sequential dependencies. Indeed models like CRF-REG⊕LUT perform nearly as well even without
separate debiasing and decompression corrections.

The bottom row of Figure 2 examines the relative performance of the nine models defined by the
Cartesian product of model type (REG, LUT and REG⊕LUT) and inference type (SIMPLE, CRF,
and ORACLE). The joint model REG⊕LUT that exploits both the regularity of the regression model
and the flexibility of the lookup table clearly works better than either REG or LUT in isolation.
Comparing SIMPLE, which ignores the mutual constraints provided by the inferred sensations, to
to CRF, which exploits bidirectional temporal constraints, we see that the CRF inference produces
reliably better results in five of six cases, as evaluated by paired t-tests. We do not have a good
explanation for the advantage of SIMPLE-LUT over CRF-LUT in Experiment 1, although there are
some minor differences in how the lookup tables for the two models are constructed, and we are
investigating whether those differences might be responsible. We included the ORACLE models to
give us a sense of how much improvement we might potentially obtain, and clearly there is still
some potential gain as indicated by ORACLE-REG⊕LUT.

5 Discussion

Psychologists have long been struck by the relativity of human judgments and have noted that rela-
tivity limits how well individuals can communicate their internal sensations, impressions, and eval-
uations via rating scales. We’ve shown that decontamination techniques can improve the quality of
judgments, reducing error by over 20% Is a 20% reduction significant? In the Netflix competition, if
this improvement in the reliability of the available ratings translated to a comparable improvement
in the collaborative filtering predictions, it would have been of critical significance.

In this paper, we explored a fairly mundane domain: estimating the gap between pairs of dots on
a computer monitor. The advantage of starting our explorations in this domain is that it provided
us with ground truth data for training and evaluation of models. Will our conclusions about this
sensory domain generalize to more subjective and emotional domains such as movies and art? We
are currently designing a study in which we will collect liking judgments for paintings. Using the
models we developed for this study, we can obtain a decontamination of the ratings and identify
pairs of paintings where the participant’s ratings conflict with the decontaminated impressions. Via
a later session in which we ask participants for pairwise preferences, we can determine whether
the decontaminator or the raw ratings are more reliable. We have reason for optimism because all
evidence in the psychological literature suggests that corruption occurs in the mapping of internal
states to responses, and there’s no reason to suspect that the mapping is different for different types
of sensations. Indeed, it seems that if even responses to simple visual stimuli are contaminated,
responses to more complex stimuli with a more complex judgment task will be even more vulnerable.

One key limitation of the present work is that it examines unidimensional stimuli, and any interesting
domain will involve multidimensional stimuli, such as movies, that could be rated in many different
ways depending on the current focus of the evaluator. Anchoring likely determines relevant dimen-
sions as well as the reference points along those dimensions, and it may require a separate analysis
to decontaminate this type of anchor.

On the positive side, the domain is ripe for further explorations, and our work suggests many direc-
tions for future development. For instance, one might better leverage the CRF’s ability to predict not
just the expected sensation, but the distribution over sensations. Alternatively, one might pay closer
attention to the details of psychological theory in the hope that it provides helpful constraints. One
such hint is the finding that systematic effects of sequences have been observed on response latencies
in judgment tasks (Lacouture, 1997); therefore, latencies may prove useful for decontamination.

A Wired Magazine article on the Netflix competition was entitled, “This psychologist might outsmart
the math brains competing for the Netflix prize” (Ellenberg, March 2008). This provocative title
didn’t turn out to be true, but the title did suggest—consistent with the findings of our research—
that the math brains may do well to look inward at the mechanisms of their own brains.
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